Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

High-reflectivity AlN/GaN distributed Bragg reflectors grown on sapphire substrates by MOCVD

Identifieur interne : 000830 ( Chine/Analysis ); précédent : 000829; suivant : 000831

High-reflectivity AlN/GaN distributed Bragg reflectors grown on sapphire substrates by MOCVD

Auteurs : RBID : Pascal:11-0297843

Descripteurs français

English descriptors

Abstract

High-reflectivity AlN/GaN distributed Bragg reflectors (DBRs) were grown on c-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVD). A low temperature (LT) predeposition AIN layer and indium doping during the growth of the λ/4 AlN layers were adopted to improve the quality of the DBR. During the growth of the DBR, the structural alternation occurred abruptly when an AIN layer was grown on a GaN layer but gradually in reverse order, which resulted in a stack of quasi-three-layer periodic arrangement rather than two-layer arrangement for one growth period. The peak reflectivity of DBRs reaches 99% at the designed wavelength. The root mean square (RMS) roughness of the surface is around 4 nm over a 10 μm x 10 μm surface area of the DBR. Meanwhile, the high-reflectivity (93%) and crack-free DBR with only 16-period AlN/GaN structures was obtained by employing an optimized AlN predeposition layer.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:11-0297843

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">High-reflectivity AlN/GaN distributed Bragg reflectors grown on sapphire substrates by MOCVD</title>
<author>
<name sortKey="Wu, C M" uniqKey="Wu C">C. M. Wu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Micro/Nano Optoelectronics, Department of Physics, Xiamen University</s1>
<s2>Xiamen 361005</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, B P" uniqKey="Zhang B">B. P. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Micro/Nano Optoelectronics, Department of Physics, Xiamen University</s1>
<s2>Xiamen 361005</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Pen-Tung Sah Micro/Nano Technology Research Center, Xiamen University</s1>
<s2>Xiamen 361005</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Science</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Shang, J Z" uniqKey="Shang J">J. Z. Shang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="04">
<s1>Division of Physics and Applied Physics, School of Physical and Mathematical Science, Nanyang Technological University</s1>
<s2>Singapore 637371</s2>
<s3>SGP</s3>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Singapour</country>
<wicri:noRegion>Singapore 637371</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cai, L E" uniqKey="Cai L">L. E. Cai</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Micro/Nano Optoelectronics, Department of Physics, Xiamen University</s1>
<s2>Xiamen 361005</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, J Y" uniqKey="Zhang J">J. Y. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Micro/Nano Optoelectronics, Department of Physics, Xiamen University</s1>
<s2>Xiamen 361005</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Science</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yu, J Z" uniqKey="Yu J">J. Z. Yu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Micro/Nano Optoelectronics, Department of Physics, Xiamen University</s1>
<s2>Xiamen 361005</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Science</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Q M" uniqKey="Wang Q">Q. M. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Laboratory of Micro/Nano Optoelectronics, Department of Physics, Xiamen University</s1>
<s2>Xiamen 361005</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Xiamen 361005</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Science</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">11-0297843</idno>
<date when="2011">2011</date>
<idno type="stanalyst">PASCAL 11-0297843 INIST</idno>
<idno type="RBID">Pascal:11-0297843</idno>
<idno type="wicri:Area/Main/Corpus">002F58</idno>
<idno type="wicri:Area/Main/Repository">002D32</idno>
<idno type="wicri:Area/Chine/Extraction">000830</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0268-1242</idno>
<title level="j" type="abbreviated">Semicond. sci. technol.</title>
<title level="j" type="main">Semiconductor science and technology</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium Nitrides</term>
<term>Binary compounds</term>
<term>Bragg reflection</term>
<term>Distributed Bragg reflection</term>
<term>Experimental study</term>
<term>Gallium Nitrides</term>
<term>III-V semiconductors</term>
<term>MOCVD</term>
<term>Reflectivity</term>
<term>Roughness</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Réflexion Bragg</term>
<term>Réflexion Bragg répartie</term>
<term>Etude expérimentale</term>
<term>Méthode MOCVD</term>
<term>Facteur réflexion</term>
<term>Rugosité</term>
<term>Composé binaire</term>
<term>Semiconducteur III-V</term>
<term>Gallium Nitrure</term>
<term>Aluminium Nitrure</term>
<term>Substrat saphir</term>
<term>Ga N</term>
<term>AlN</term>
<term>GaN</term>
<term>Réflecteur Bragg</term>
<term>4279F</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">High-reflectivity AlN/GaN distributed Bragg reflectors (DBRs) were grown on c-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVD). A low temperature (LT) predeposition AIN layer and indium doping during the growth of the λ/4 AlN layers were adopted to improve the quality of the DBR. During the growth of the DBR, the structural alternation occurred abruptly when an AIN layer was grown on a GaN layer but gradually in reverse order, which resulted in a stack of quasi-three-layer periodic arrangement rather than two-layer arrangement for one growth period. The peak reflectivity of DBRs reaches 99% at the designed wavelength. The root mean square (RMS) roughness of the surface is around 4 nm over a 10 μm x 10 μm surface area of the DBR. Meanwhile, the high-reflectivity (93%) and crack-free DBR with only 16-period AlN/GaN structures was obtained by employing an optimized AlN predeposition layer.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0268-1242</s0>
</fA01>
<fA02 i1="01">
<s0>SSTEET</s0>
</fA02>
<fA03 i2="1">
<s0>Semicond. sci. technol.</s0>
</fA03>
<fA05>
<s2>26</s2>
</fA05>
<fA06>
<s2>5</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>High-reflectivity AlN/GaN distributed Bragg reflectors grown on sapphire substrates by MOCVD</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>WU (C. M.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>ZHANG (B. P.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SHANG (J. Z.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>CAI (L. E.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>ZHANG (J. Y.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>YU (J. Z.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WANG (Q. M.)</s1>
</fA11>
<fA14 i1="01">
<s1>Laboratory of Micro/Nano Optoelectronics, Department of Physics, Xiamen University</s1>
<s2>Xiamen 361005</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Pen-Tung Sah Micro/Nano Technology Research Center, Xiamen University</s1>
<s2>Xiamen 361005</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Science</s1>
<s2>Beijing 100083</s2>
<s3>CHN</s3>
<sZ>2 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
</fA14>
<fA14 i1="04">
<s1>Division of Physics and Applied Physics, School of Physical and Mathematical Science, Nanyang Technological University</s1>
<s2>Singapore 637371</s2>
<s3>SGP</s3>
<sZ>3 aut.</sZ>
</fA14>
<fA20>
<s2>055013.1-055013.5</s2>
</fA20>
<fA21>
<s1>2011</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>21041</s2>
<s5>354000192080330130</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2011 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>27 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>11-0297843</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Semiconductor science and technology</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>High-reflectivity AlN/GaN distributed Bragg reflectors (DBRs) were grown on c-plane sapphire substrates by metalorganic chemical vapor deposition (MOCVD). A low temperature (LT) predeposition AIN layer and indium doping during the growth of the λ/4 AlN layers were adopted to improve the quality of the DBR. During the growth of the DBR, the structural alternation occurred abruptly when an AIN layer was grown on a GaN layer but gradually in reverse order, which resulted in a stack of quasi-three-layer periodic arrangement rather than two-layer arrangement for one growth period. The peak reflectivity of DBRs reaches 99% at the designed wavelength. The root mean square (RMS) roughness of the surface is around 4 nm over a 10 μm x 10 μm surface area of the DBR. Meanwhile, the high-reflectivity (93%) and crack-free DBR with only 16-period AlN/GaN structures was obtained by employing an optimized AlN predeposition layer.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B40B79F</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Réflexion Bragg</s0>
<s5>03</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Bragg reflection</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Réflexion Bragg répartie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Distributed Bragg reflection</s0>
<s5>04</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Reflexión Bragg repartida</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
<s5>29</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Experimental study</s0>
<s5>29</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Méthode MOCVD</s0>
<s5>30</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>MOCVD</s0>
<s5>30</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Facteur réflexion</s0>
<s5>41</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Reflectivity</s0>
<s5>41</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Rugosité</s0>
<s5>42</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Roughness</s0>
<s5>42</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Composé binaire</s0>
<s5>50</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Binary compounds</s0>
<s5>50</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>51</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>51</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Gallium Nitrure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Gallium Nitrides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>52</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Aluminium Nitrure</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>62</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Aluminium Nitrides</s0>
<s2>NC</s2>
<s2>NA</s2>
<s5>62</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Substrat saphir</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Ga N</s0>
<s4>INC</s4>
<s5>75</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>AlN</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Réflecteur Bragg</s0>
<s4>INC</s4>
<s5>85</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>4279F</s0>
<s4>INC</s4>
<s5>86</s5>
</fC03>
<fN21>
<s1>206</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000830 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000830 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:11-0297843
   |texte=   High-reflectivity AlN/GaN distributed Bragg reflectors grown on sapphire substrates by MOCVD
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024